RA330 Advantages
• The microstructure and chemical content of RA330 is very tightly controlled to enable it to withstand the effects of carburization as well as thermal shock and thermal fatigue, making it a prime candidate for thermal processing applications.
• RA330 can handle temperatures up to 2100°F which is higher than or comparable to other alloys with almost twice as much nickel. Alloys like 625 (1800°F) & 600 (2100°F) have significantly higher cost and little if any significant advantage.
• RA330 has been assigned to ASME P number 46 and can be welded using RA330-04 or 82 weld fillers.

RA 253 MA Advantages
• RA 253 MA has a leaner nickel content that allows it to remain very cost effective versus nickel base alloys.
• RA 253 MA has great high temperature strength, similar to high nickel alloys like alloy 601, and superior to other lower nickel stainlesses.
• RA 253 MA has been assigned to the same P group in ASME Section IX as 309 stainless and welded using standard practices (P - 8, Group 2).

Chemical Composition, %

<table>
<thead>
<tr>
<th>UNS</th>
<th>W.Nr</th>
<th>Cr</th>
<th>Ni</th>
<th>Si</th>
<th>Mn</th>
<th>C</th>
<th>Ce</th>
<th>N</th>
<th>Fe</th>
</tr>
</thead>
<tbody>
<tr>
<td>RA330®</td>
<td>N08330</td>
<td>1.4886</td>
<td>19</td>
<td>35</td>
<td>1.25</td>
<td>1.0</td>
<td>0.06</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>RA 253 MA®</td>
<td>S30815</td>
<td>1.4835</td>
<td>21</td>
<td>11</td>
<td>1.7</td>
<td>0.6</td>
<td>0.08</td>
<td>0.04</td>
<td>0.17</td>
</tr>
</tbody>
</table>

Cantilever Testing
3 x 6 hour cycles at 2000°F

Average Stress
0.0001% Per Hour
Minimum Creep Rate
Maximum allowable design stresses, ksi

<table>
<thead>
<tr>
<th>Material</th>
<th>1100°F</th>
<th>1200°F</th>
<th>1350°F</th>
<th>1500°F</th>
<th>1650°F</th>
</tr>
</thead>
<tbody>
<tr>
<td>RA330</td>
<td>7.8</td>
<td>4.7</td>
<td>2.4</td>
<td>1.1</td>
<td>0.48</td>
</tr>
<tr>
<td>RA 253 MA</td>
<td>9.0</td>
<td>5.2</td>
<td>2.4</td>
<td>1.3</td>
<td>0.71</td>
</tr>
</tbody>
</table>

Maximum Suggested Temperature Limit in Air

Thermal Fatigue

RA330 vs cast

The data and information in this printed matter are believed to be reliable. However, this material is not intended as a substitute for competent professional engineering assistance which is a requisite to any specific application. Rolled Alloys makes no warranty and assumes no legal liability or responsibility for results to be obtained in any particular situation, and shall not be liable for any direct, indirect, special, or consequential damage therefrom. This material is subject to revision without prior notice.

© 2013 Rolled Alloys

Bulletin No. 166USe 10/13

The Global Leader in Specialty Metals