The 15-5 alloy was designed to have greater toughness than 17-4 PH. The 15-5 alloy is martensitic in structure in the annealed condition and is further strengthened by a relatively low temperature heat treatment which precipitates a copper containing phase in the alloy. 15-5 is also referred to as XM-12 in some specifications.

Specifications

UNS: S15500
ASTM: A 564, A 693, A 705
AMS: 5659, 5862J Type 2, STD 2154
ASME: SA-564, SA-693, SA-705
OTHER: BAC 5439 Rev H Class A Type 1, BMS 7-240G Type 1, BSS7055 Rev A

Chemical Composition, %

<table>
<thead>
<tr>
<th>Ni</th>
<th>Cr</th>
<th>Mn</th>
<th>Cu</th>
<th>Si</th>
<th>C</th>
<th>P</th>
<th>S</th>
<th>Fe</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIN</td>
<td>3.5</td>
<td>14.0</td>
<td>–</td>
<td>2.5</td>
<td>–</td>
<td>0.15</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>MAX</td>
<td>5.5</td>
<td>15.5</td>
<td>1.0</td>
<td>4.5</td>
<td>1.0</td>
<td>0.45</td>
<td>0.07</td>
<td>0.04</td>
</tr>
</tbody>
</table>

Features

- Precipitation Hardening
- High Strength
- Moderate corrosion resistance to 600°F

Applications

- Aerospace applications
- Chemical and petrochemical applications
- Pulp and paper
- Food processing

Physical Properties

- Density: 0.280 lb/in³
- Poisson’s Ratio: 0.272
- Electrical Resistivity: 589 Ohm-circ mil/ft

Mechanical Properties

- **Minimum Specified Properties, ASTM A 564**
 - Hardness MAX, Brinell: 363 (Condition A)

<table>
<thead>
<tr>
<th>Condition</th>
<th>H 900</th>
<th>H 1075</th>
<th>H 1150</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2% Offset Yield Strength, ksi</td>
<td>170</td>
<td>125</td>
<td>105</td>
</tr>
<tr>
<td>Ultimate Tensile Strength, ksi</td>
<td>190</td>
<td>145</td>
<td>135</td>
</tr>
<tr>
<td>Elongation, % in 2" minimum</td>
<td>10</td>
<td>13</td>
<td>16</td>
</tr>
<tr>
<td>Reduction of Area, %</td>
<td>35</td>
<td>45</td>
<td>50</td>
</tr>
<tr>
<td>Hardness, Brinell</td>
<td>388</td>
<td>331</td>
<td>277</td>
</tr>
</tbody>
</table>
The data and information in this printed matter are believed to be reliable. However, this material is not intended as a substitute for competent professional engineering assistance which is a requisite to any specific application. Rolled Alloys makes no warranty and assumes no legal liability or responsibility for results to be obtained in any particular situation, and shall not be liable for any direct, indirect, special, or consequential damage therefrom. This material is subject to revision without prior notice.

© 2011 Rolled Alloys
Bulletin No. 1721USe 07/12

The Global Leader in Specialty Metals