

RA 253 MA® is a fully austenitic, cerium-bearing heat resistant alloy. Matching weld fillers are designed to deposit approximately 4-10 FN to assure a sound, crack-free weld deposit.

				8, A 409, A 473,					
emical Composition, %		Cr	Ni	Mn	Si	C	N	Ce	Fe
·	MIN	20.0	10.0	-	1.4	0.05	0.14	0.03	-
	MAX	22.0	12.0	0.8	2.0	0.1	0.2	0.08	balance
at	to the	touch in ord	er to dry the n		emperatures sh	ould be kept low			essary to heat w will avoid possibi
er Metals	GTAW	is available	as 36 [°] length		/8" diameter. F	or GMAW or SA	W, RA 253 MA v	vire is available	RA 253 MA wire e on 25 lb. spool
AW				en (AWS EWTh-2) with direct c	urrent straight p	olarity (electrod	le negative). F	: welding. Electro or good arc cont
	grind	the electrode	e tip to a 30 t	to 60 degree poi a 120 grit wheel.					ro the electrode,
	grind circum Typicc	the electrode nferential. Fir 1 1 GTAW Para	e tip to a 30 t nish grind on a imeters	a 120 grit wheel.	Adjust the arc	on clean scrap		cale.	
	grind circum Typicc 2% Th	the electrode nferential. Fir a l GTAW Para noriated Tungst	e tip to a 30 t nish grind on a imeters	Direct Current Po	Adjust the arc plarity			cale.	Gas Argon or Argon-
	grind circum Typicc 2% Th diame	the electrode nferential. Fin al GTAW Para noriated Tungst eter, in	e tip to a 30 t nish grind on a imeters	a 120 grit wheel.	Adjust the arc plarity	on clean scrap		cale.	Gas Argon or Argon-
	grind circum Typicc 2% Th diame 0.040 0.062	the electrode nferential. Fin al GTAW Para noriated Tungst eter, in	e tip to a 30 t nish grind on a imeters	Direct Current Po (Electrodes Nego 25-80 50-145	Adjust the arc plarity	on clean scrap Volts 10-14 12-16		Cale. Shielding O Helium Miz 25 25	Gas Argon or Argon-
ıs Tungsten c Welding	grind circum Typicc 2% T <mark>i diame</mark> 0.040	the electrode nferential. Fin al GTAW Para noriated Tungst eter, in	e tip to a 30 t nish grind on a imeters	Direct Current Po (Electrodes Nega 25-80	Adjust the arc plarity	on clean scrap Volts 10-14		cale. Shielding C Helium Mix 25	Gas Argon or Argon-
c Welding MAW Is Metal	grind circum Typicc 2% Th diame 0.040 0.062 0.094 RA 25 Shield mix cc This g Do NC	the electrode offerential. Fir al GTAW Para noriated Tungst eter, in 3 MA wire m ling gas for th pontaining 80% as may also 1)T use 98% A	e tip to a 30 t nish grind on a u meters en Electrode, aay be used in he spray-arc tu % minimum ar be used for gla r 2% O ₂ shield	Direct Current Po (Electrodes Nega 25-80 50-145 135-235 the spray-arc, pu ransfer mode may gon and no more obular or short-ar ing gas with RA 2	Adjust the arc larity tive), Amperes Ised-arc, globul / be 100% argo than 2%CO ₂ . O c welding. '53 MA welding	on clean scrap Volts 10-14 12-16 12-20 ar and short-circ n. For improved ne such mix is A wire. This will re	metal, with no so uiting arc transfe wetting and bea ir Liquide®'s Blue educe cerium trar	cale. Shielding (Helium Miz 25 25 25 25 25 25 25 25 25 25 25 25 25	Gas Argon or Argon-
	grind circum Typicc 2% Th diame 0.040 0.062 0.094 RA 25 Shield mix cc This g Do NC oxidat Gases	the electrode offerential. Fir al GTAW Para portated Tungst eter, in 3 MA wire m ling gas for th ontaining 80% as may also 0T use 98% A rion resistance used only for	e tip to a 30 t nish grind on a u meters en Electrode, ay be used in the spray-arc tr % minimum ar be used for gla r 2% O ₂ shield e and creep-rup r short-circuitin	Direct Current Po (Electrodes Nega 25-80 50-145 135-235 the spray-arc, pu cansfer mode may gon and no more obular or short-ar ing gas with RA 2 pture properties o ug arc or globular	Adjust the arc larity tive), Amperes Ised-arc, globul / be 100% argo than 2%CO ₂ . O c welding. :53 MA welding f the weld bead transfer include	on clean scrap Volts 10-14 12-16 12-20 ar and short-circ n. For improvec ne such mix is A wire. This will ru ABSOLUTELY do 75% Ar 25% He	metal, with no so uiting arc transfe wetting and bea ir Liquide®'s Blue educe cerium tran o NOT use 75% A , the commonly a	cale. Shielding G Helium Miz 25 25 25 25 25 25 25 25 25 25 25 25 25	Gas Argon or Argon- ces, CFH Suggest an Ar-He- 6 Ar 18% He 1% C arc, hence lower
Welding AW s Metal	grind circum Typicc 2% Th diame 0.040 0.062 0.094 RA 25 Shield mix cc This g Do NC oxidat Gases 2-1/2 work.	the electrode offerential. Fir al GTAW Para portated Tungst eter, in 3 MA wire m ling gas for th ontaining 80% as may also 10 use 98% A rion resistance used only for 1% CO ₂ or a m	e tip to a 30 t nish grind on a u meters en Electrode, ay be used in the spray-arc tr % minimum ar be used for gla r 2% O ₂ shield e and creep-rup r short-circuitin	Direct Current Po (Electrodes Nega 25-80 50-145 135-235 the spray-arc, pu cansfer mode may gon and no more obular or short-ar ing gas with RA 2 pture properties o ug arc or globular Ar 30% He 2% Cu	Adjust the arc larity tive), Amperes Ised-arc, globul y be 100% argo than 2%CO ₂ . O c welding. 53 MA welding f the weld bead transfer include D ₂ . The lower he rent DCRP, Amper	on clean scrap Volts 10-14 12-16 12-20 ar and short-circ n. For improvec ne such mix is A wire. This will rd ABSOLUTELY do 75% Ar 25% He slium mixtures gi	metal, with no so witing arc transfe wetting and bea wetting and bea wetting and bea wetting and bea so wetting arc transfe beau wetting arc transfe beau wetting arc transfe wetting arc transfe beau wetting arc transfe wetting	cale. Shielding G Helium Miz 25 25 25 25 25 25 25 25 25 25 25 25 25	Gas Argon or Argon- kes, CFH suggest an Ar-He- & Ar 18% He 1% C arc, hence lower le 7-1/2% Ar
: Welding IAW s Metal	grind circum Typicc 2% Th diame 0.040 0.062 0.094 RA 25 Shield mix cc This g Do NC oxidat Gases 2-1/2 work. <u>Wire</u> 0.035	the electrode aferential. Fir al GTAW Para coriated Tungst eter, in 3 MA wire m ling gas for tl ontaining 80% as may also 10 use 98% A cion resistance used only for 2% CO ₂ or a m	e tip to a 30 t nish grind on a u meters en Electrode, ay be used in the spray-arc tr % minimum ar be used for gla r 2% O ₂ shield e and creep-rup r short-circuitin	Direct Current Po (Electrodes Nega 25-80 50-145 135-235 the spray-arc, pu cansfer mode may gon and no more obular or short-ar ing gas with RA 2 pture properties o ug arc or globular Ar 30% He 2% Cu	Adjust the arc larity tive), Amperes Ised-arc, globul / be 100% argo than 2%CO ₂ . O c welding. 253 MA welding f the weld bead transfer include D ₂ . The lower he rent DCRP, Amper -210	on clean scrap Volts 10-14 12-16 12-20 ar and short-circ n. For improvec ne such mix is A wire. This will rd ABSOLUTELY do 75% Ar 25% He slium mixtures gi	metal, with no so witing arc transfe wetting and bea wetting and bea wetting and bea so NOT use 75% A o NOT use 75% A the commonly a ve a cooler arc a Volts 26	cale. Shielding G Helium Miz 25 25 25 25 25 25 25 25 25 25 25 25 25	Gas Argon or Argon- kes, CFH suggest an Ar-He- & Ar 18% He 1% C arc, hence lower le 7-1/2% Ar
: Welding IAW s Metal	grind circum Typicc 2% Th diame 0.040 0.062 0.094 RA 25 Shield mix cc This g Do NC oxidat Gases 2-1/2 work. <u>Wire</u> 0.035 0.045	the electrode offerential. Fir al GTAW Para oriated Tungst eter, in 3 MA wire m ling gas for th ontaining 80% as may also 10 use 98% A cion resistance used only for 2% CO ₂ or a m	e tip to a 30 t nish grind on a u meters en Electrode, ay be used in the spray-arc tr % minimum ar be used for gla r 2% O ₂ shield e and creep-rup r short-circuitin	Direct Current Po (Electrodes Nega 25-80 50-145 135-235 the spray-arc, pu ransfer mode may gon and no more obular or short-ar ing gas with RA 2 pture properties o ug arc or globular Ar 30% He 2% Cu	Adjust the arc larity tive), Amperes Ised-arc, globul y be 100% argo than 2%CO ₂ . O c welding. 253 MA welding f the weld bead transfer include D ₂ . The lower here rent DCRP, Amperen- 210 -240	on clean scrap Volts 10-14 12-16 12-20 ar and short-circ n. For improvec ne such mix is A wire. This will rd ABSOLUTELY do 75% Ar 25% He slium mixtures gi	metal, with no so witing arc transfe wetting and bea wetting and bea wetting and bea so NOT use 75% A the commonly a ve a cooler arc a Volts 26 27	cale. Shielding G Helium Miz 25 25 25 25 25 25 25 25 25 25 25 25 25	Gas Argon or Argon- kes, CFH suggest an Ar-He- & Ar 18% He 1% C arc, hence lower le 7-1/2% Ar
Welding AW s Metal	grind circum Typicc 2% TH diame 0.040 0.062 0.094 RA 25 Shield mix cc This g Do NC oxidat Gases 2-1/2 work. <u>Wire</u> 0.035 0.045 0.062	the electrode aferential. Fir al GTAW Para toriated Tungst eter, in 3 MA wire m 3 MA wire m 3 MA wire m 3 MA wire m 3 MA wire m 10 ntaining 80% as may also 10 use 98% A 10 resistance used only for 10 use only for 10 ameter, in 11 ameter, in	e tip to a 30 f nish grind on a uneters en Electrode, aay be used in he spray-arc tr % minimum ar be used for gle r 2% O ₂ shield e and creep-ru r short-circuitin nixture of 68%	Direct Current Po (Electrodes Nega 25-80 50-145 135-235 the spray-arc, pu ransfer mode may gon and no more obular or short-ar ing gas with RA 2 pture properties o ag arc or globular Ar 30% He 2% Ct (Cur 160 180 240	Adjust the arc larity tive), Amperes Ised-arc, globul / be 100% argo than 2%CO ₂ . O c welding. 253 MA welding f the weld bead transfer include D ₂ . The lower he rent DCRP, Amper -210	on clean scrap Volts 10-14 12-16 12-20 ar and short-circ n. For improvec ne such mix is A wire. This will rd ABSOLUTELY do 75% Ar 25% He slium mixtures gi	metal, with no so witing arc transfe wetting and bea wetting and bea wetting and bea so NOT use 75% A o NOT use 75% A the commonly a ve a cooler arc a Volts 26	cale. Shielding G Helium Miz 25 25 25 25 25 25 25 25 25 25 25 25 25	Gas Argon or Argon- kes, CFH suggest an Ar-He- & Ar 18% He 1% C arc, hence lower le 7-1/2% Ar
: Welding IAW s Metal	grind circum Typicc 2% Th diame 0.040 0.062 0.094 RA 25 Shield mix cc This g Do NC oxidat Gases 2-1/2 work. <u>Wire</u> 0.035 0.045 0.062 Globu	the electrode aferential. Fir al GTAW Para toriated Tungst eter, in 3 MA wire m 3 MA wire m 3 MA wire m 3 MA wire m 3 MA wire m 10 ntaining 80% as may also 10 use 98% A 10 resistance used only for 10 use only for 10 ameter, in 11 ameter, in	e tip to a 30 t nish grind on a u meters en Electrode, ay be used in the spray-arc tr % minimum ar be used for gla r 2% O ₂ shield e and creep-rup r short-circuitin	Direct Current Po (Electrodes Nega 25-80 50-145 135-235 the spray-arc, pu cansfer mode may gon and no more obular or short-ar ing gas with RA 2 pture properties o ug arc or globular Ar 30% He 2% Cu (Cur 160 180 240 He	Adjust the arc larity tive), Amperes Ised-arc, globul y be 100% argo than 2%CO ₂ . O c welding. 253 MA welding f the weld bead transfer include D ₂ . The lower here rent DCRP, Amperen- 210 -240	on clean scrap Volts 10-14 12-16 12-20 ar and short-circ n. For improvec ne such mix is A wire. This will r ABSOLUTELY d 75% Ar 25% He lium mixtures gi es	metal, with no so witing arc transfe wetting and bea wetting and bea wetting and bea so NOT use 75% A the commonly a ve a cooler arc a Volts 26 27	cale. Shielding G Helium Miz 25 25 25 25 25 25 25 25 25 25 25 25 25	Gas Argon or Argon- kes, CFH suggest an Ar-He- & Ar 18% He 1% C arc, hence lower le 7-1/2% Ar

120-130

0.035

18

SMAW Shielded Metal Arc Welding RA 253 MA AC/DC titania electrodes, UNS W30816, may be used with either alternating current or with direct current, reverse polarity (electrode positive). The presence of cerium in RA 253 MA electrodes gives the weld bead a somewhat rougher appearance as compared with ordinary stainless welds.

It is important to maintain the arc length as short as possible, as it minimizes loss of cerium through the arc and improves penetration. Starts and craters should be filled in. Stringer beads with only a slight weave, not more than twice the electrode diameter are preferred. Weaving is necessary for vertical welds. All welding flux must be removed from each deposit, between passes and after the final pass. Residual welding flux may corrode the material when placed in high temperature service.

Typical SMAW Parameters (The lower end of the range is used for out-of-positioning welding)

Suggested Current Ranges - At 24-30 Volt				
Inch	3/32	1/8	5/32	
Amperes	45-70	70-110	100-140	

RA 253 MA electrodes are packaged in hermetically sealed containers to assure freedom from contamination and moisture absorption. After opening, the electrodes should be stored at 150- 250°F to prevent the coating from absorbing moisture. Electrodes damaged by exposure to atmospheric humidity should be reconditioned for two to four hours at 500-600°F. It is important to heat and cool slowly. Porosity and excessive spatter may result if electrodes are not completely dry.

FCAW Flux Cored Wire

SAW Submerged Arc Welding

Intended for service up to 2000°F. Neither preheat or post weld treatment is necessary. Unused wire should be stored in a moisture resistant environment. Starting welding parameters for flat/horizontal position: 100-200 amps, 25-35 volts. Suggestions for welding:

Shielding Gas: 75% Argon 25% CO₂

Gas Flow Rate: 40 ft³/hour

Wire Extension: 1/2" - 1"

RA 253 MA is sub-arc welded using the neutral basic Avesta Flux 805, basicity index 1.7. This is an agglomerate type welding flux characterized by neat deposit surfaces, a smooth transition zone between parent and weld metal, easy slag removal and excellent resistance to moisture absorption during storage.

Correct joint geometry must be used to avoid hot cracking in sub-arc welding. This means that the width of the joint must be greater than the depth. Width should be about 2-3 times depth. Also, interpass temperature should be kept well below 200°F. For all welding processes make stringer beads, do not weave. Do not preheat, except as necessary to ensure the metal is dry.

Typical SAW Parameters

Wire Diameter, in	Direct Current Reverse Polarity, Amperes	Volts	Wire Stickout, in	Travel Speed, in/min
0.062	160-210	29	3/4	8-12
0.094	180-240	27-32	1	16-24
0.125	240-320	30-32	1	16-24

Dissimilar Metal Welding

	For Joining RA 253 MA Base Metal to	Weld Filler
	Carbon Steel	309
	Stainless 304, 316, 309, 310	RA 253 MA or 309
	RA330®	RA330-04 or RA333®

MA is a registered trademark of Outokumpu Stainless, Rolled Alloys, RA, RA330, and RA333 are registered trademarks of Rolled Alloys, Air Liquide is a registered trademark of L'AIR Liqui

The Global Leader in Specialty Metals

www.rolledalloys.com © 2011 Rolled Alloys® Bulletin No. 134USe 12/18